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A practical and enantiospecific conversion of DD-galactose to
a substituted a,b-unsaturated d-lactone synthon
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Abstract—A multi-gram synthesis of a substituted a,b-unsaturated d-lactone synthon, 1, was developed from commercially available
DD-galactose. The use of a Horner–Wadsworth–Emmons reaction was able to furnish, with Z selectivity, the enone ester that spon-
taneously lactonised to provide enantiomerically pure 1.
� 2007 Elsevier Ltd. All rights reserved.
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Substituted a,b-unsaturated d-lactone skeletons are
common in bioactive natural products such as (+)-
asperlin,1 the styryllactones2 and the bisnorditerpene
dilactone3 family of natural products (Fig. 1). Enantio-
merically pure and substituted a,b-unsaturated d-lac-
tones, such as I and II, are also used frequently as
chiral synthons in carbohydrate or natural product syn-
thesis, typically as Michael acceptors4 or dipolarophiles
in cycloaddition reactions.5 While the preparative con-
version of commercially available DD-glucose to the pro-
tected a,b-unsaturated d-lactone synthons such as 2 is
relatively efficient6 a comparably practical method for
accessing 1 from DD-galactose remains absent.
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Figure 1. Examples of bioactive natural products containing substi-
tuted a,b-unsaturated d-lactones.
Currently only one synthesis of 1 has been reported
(Scheme 1).7 This sequence requires the conversion of
DD-galactose to a nitro sugar (4) as the key intermediate
for the subsequent isomerisation and denitration steps.
Other approaches to the analogues of 1, using different
protecting schemes on 4,6-diol, include dehydration of
hydroperoxide carbohydrates,8 stereoselective transfor-
mation of sugar-derived vinyl oxiranes9 and cyclisation
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of dihydroxylated vinyl furans.10 These syntheses, typi-
cally six to ten steps from commercially available build-
ing blocks with overall yields under 10%, are less
suitable to the preparative needs of chiral synthons.
Herein is reported a multi-gram conversion of DD-galact-
ose to the D-threo-a,b-unsaturated d-lactone 1 in three
steps with one column chromatography at the end and
an overall yield of 22%.
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This sequence (Scheme 2) initiates with the diastereo-
selective benzylidene protection of the 4,6-diols of DD-
galactose. Although a total of four diastereomers could
potentially form due to the benzylidene group and the
anomeric centre, only two were produced as an anomer-
ic mixture (10) of 6:1 (a:b) ratio with the benzylidene
carbon in the S configuration. All the common proce-
dures for this reaction involve mechanically stirring or
shaking a mixture of DD-galactose, benzaldehyde and
ZnCl2 for approximately 24 h.11–16 While 4,6-O-benzyl-
idene-DD-galactopyranose, 10, could be isolated by an
aqueous work-up followed by lypophilisation, repeated
cycles of solvent extraction and recrystallisations,11–15

Rochlin’s protocol,16 in which the aqueous solution of
10 after work-up could be directly subjected, without
further purification, to NaIO4 oxidation, was adopted
to provide a comparable, 38% yield of 2,4-O-benzyl-
idene-DD-threose 11 over two steps from DD-galactose.
This procedure could be performed on scales of up to
30 kg without reduction in efficiency.16 Although the
oxidation of 10 generally proceeds in nearly quantitative
yields at a pH above 7.0–7.5,11,13 the conversion of DD-
galactose to 10 is the yield-limiting step due to incom-
plete reaction of DD-galactose16 as well as the formation
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of dibenzylated byproducts.15 However, the unreacted
DD-galactose and the dibenzylated products could be
readily removed during work-up and recycled.17

Threose 11 was found to exist as a complex mixture of
the monomeric form 11a and oligomeric form 11b, as
the 1H NMR spectrum of crude 11 showed only weak
resonances attributable to the aldehyde form 11a. This
observation is consistent with that made for the eryth-
roses derived from DD-glucose.18,19 Nevertheless, these
compounds react as aldehydes and had previously been
subjected to both the Wittig11–16,20,21 and E-selective
Horner–Wadsworth–Emmons (HWE)19 reactions. The
Z-selective HWE reaction was developed here, on the
basis of Ando’s work,22 to convert 11 to two olefinic
species, in an E:Z ratio of 19:81 by 1H NMR. Interest-
ingly, the olefinic species with the Z geometry did not
contain an ethyl group, as would be expected from the
enone ester 13. Rather, this Z-olefin appeared to be
the cyclised lactone 1 resulting from spontaneous cycli-
sation of 13. After purification of the reaction mixture
by column chromatography, only lactone 1 could be iso-
lated, along with the E isomer 12 obtained as a stable
crystalline solid.23 The structure of 1 was ascertained
by the comparison of the NMR and specific optical
rotation data with those previously reported.7 Overall,
enantiomerically pure 1 was obtained in gram quantities
in two to three days requiring one column chromatogra-
phy at the end for purification.

This tandem olefination–lactonisation approach, while
new for the synthesis of 1 from DD-galactose, has been
reported in the synthesis of 16 from DD-glucose.6 The use
of a Wittig reaction is typical in the preparation of 15,
the lactonisation precursor of 16 (Scheme 3). The E/Z
selectivity is not controlled rigorously, and the E-isomer
for cyclisation can be converted to the Z-isomer in mod-
erate yields. The intramolecular lactonisation reaction is
performed at elevated temperatures using the Z-enone
ester precursor in its purified form. However, the Z-
selective HWE reaction has not been used in preparing
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either 13 or 15 prior to this report. The use of DBU,
which is necessary in the HWE reaction to generate
the phosphonate ylid in situ, also provided an ancillary
advantage of promoting the lactonisation step that
would otherwise require much higher temperatures to
proceed as reported in the synthesis of 16 using the Wit-
tig reaction. A conformational analysis was performed
on the enone ester precursors 13 and 15.26 These two
esters exhibited comparable distances (difference within
1 Å) between the nucleophilic oxygen centre and the
electrophilic carbonyl carbon, without the indication
of any conformation bias that would significantly
enhance the lactonisation in either case. This supports
indirectly the likely kinetic advantage of lactonisation
in the presence of an amidine base.

In summary, a three-step, enantiospecific conversion of
DD-galactose on a preparative scale to a chiral synthon
1 is described for the first time. The enantio-purity of
the final product was secured by a spontaneous intramo-
lecular lactonisation of a Z-enone ester formed after a
Horner–Wadsworth–Emmons reaction.
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